Expanding the Expression (4x + 2y)³ + (4x - 2y)³
This expression involves the sum of cubes. We can utilize the following algebraic identity to simplify it:
a³ + b³ = (a + b)(a² - ab + b²)
In our case, a = (4x + 2y) and b = (4x - 2y). Let's apply the identity:
-
Identify (a + b): (4x + 2y) + (4x - 2y) = 8x
-
Identify (a² - ab + b²):
- (4x + 2y)² = 16x² + 16xy + 4y²
- (4x + 2y)(4x - 2y) = 16x² - 4y²
- (4x - 2y)² = 16x² - 16xy + 4y²
- (a² - ab + b²) = 16x² + 16xy + 4y² - (16x² - 4y²) + 16x² - 16xy + 4y² = 32x² + 12y²
-
Substitute: (4x + 2y)³ + (4x - 2y)³ = (8x)(32x² + 12y²)
-
Simplify: (4x + 2y)³ + (4x - 2y)³ = 256x³ + 96xy²
Therefore, the simplified form of the expression (4x + 2y)³ + (4x - 2y)³ is 256x³ + 96xy².